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Planar embedbng with minimal area of graphs on an integer grid is an interesting problem incv
theory. Vai p gave an algorithm to construct a planar embedding for trees in linear area; he also proved
that there are planar graphs that require quadratic area.

We fill in a spectrum between Valiant's results by showing that an N-node planar graph has a planar
embedding with area 'O(NF), where F is a bound on the path length from any node to the exterior face. In
particular, an outerplanar graph can be embedded without crossovers in linear area.. This bound is tight, up
to constant factors: for any N and F, there exist graphs requiring 11(NF) area for planar embedding.

Also, finding a minimal embedding area is shown to be NP-co plete for forests, and hence for more
general types of graphs.t
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1. Introduction

VLSI design motivates the following class of problems: given a graph, map its vertices onto a plane and

its edges onto paths in that plane between the corresponding mapped vertices. Normally there are some

restrictions that the mappings must obey, such as a minimum distance between mapped vertices. The maps

give a layout, and the problem is to find a layout with a small cost. The mapping restrictions and the cost

function together specify a particular member of the class of layout problems.

Embedding of graphs has been extensively studied during the last few years [L80, V, FP, BK, CS, R,

RS, L81, L82J. In this paper we consider the layout problem when the layouts are rectilinear embedding.

without crouovers and the cost is the area of a box bounding the layout. To avoid complications, we assume

that graphs are restricted to have vertices of degree 4 or less.

In [V], Valiant looked at the layout problem for rectilinear embeddings (both with and without cross-

overs), using the bounding box area cost. He proved that a tree of vertices with maximum degree 4 can be

laid out without crossovers in an area that is linear in the number of edges (or vertices). He also showed how

Ato get a such an embedding for any planar graph using quadratic area, and proved that there are planar

graphs requiring quadratic area.

Deflitloen A planar graph has width F if there is a planar embedding of the graph such that every node

of the graph is linked to the external face of the embedding by a path of at most F vertices.

We shall show that any N-node planar graph of width F can be laid out in O(NF). area. Special cases

of th include linear area embedding. for trees and outerplanar graphs, and quadratic area embedding. for

graphs of width O(N). Furthermore, the area bound is tight up a to constant factor. This fills in a spectrum

between Valiant's results. The graph in Fig. 1.1 has N nodes and width F, and each component requires

fl(F2) for a planar embedding (see M), so the entire graph requires fl(NF) area.

N/4F subgrWlis

V nodes 4F nods

Figure 1.1 Graph needing fl(NF) area

We shall also show that finding an optimal embedding rot a forest is )JP-complete.
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Figure 2.1 (a) good separation (b) bad separation
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Figure 2.1 Cases for Separator Theorem

k-lI'sk, k-I, ... , 2, 1. We wil find a separating path with k <Fa uch that no more than twothirds of G's

vertices are on either side of it (where 'side" refers to one of the two regions that the path divides the plane

into if line are drawn from the path ends to infinity). Then G can be separated as required in the theorem

statement by removing at most 4 x 2k edges from the vertices in the separating path. The vertices on the

path itself can be divided between the two sides so that neither side ends up with more than two thirds of G.

Start out with any outer-face edge s the separating path. Assume, in general, that we have a situation

with A vertices on one side of the path, B vertices on the other, and N - A - B vertices on the path itself.

IfA:_IN andB _< N then wearedone, soamsume that B > IN.

The cases that arise are shown in Fig. 2.2 (where vertex distances are shown after colons). Figures 2.2(i)

and 2.2(i) are degenerate cases that are handled by using the right b-c path instead of the left one. The

process continues with the new path.

In Fig. 2.2(iii), vertex f is not the same as b or d. By the definition of distance of a vertex, there is an

exit path, 9- ...- h, with vertices o f distances , j - 1, ..., I or i, j + 1, ... , m - 1, m, m - 1, ... , 1 where

i + 2 and m 5 F. This exit path may coincide wholely or in part with d-...-e or b- ...-. a, but it never

need cram over them because It can merge with the rest of whichever path it touches. Also, the path should

not go back through f; this can always he avoided in a triangulated graph.

Most of the B vertices that were on the right side of the original separating path are now divided into

pieces of sises C and D. Assuming D > C, the new separating path is a-.. b-c-J-g ..... -h. Clearly, this
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To turn such a drawing into a grid embedding, insert a new grid line for every dotted straight line

segment. For the diagonal lines making the connections, at most two new horizontal and two new vertical

grid lines may be needed. (The existing edges may have to be shifted so they make their final approach from

a different direction.) Let K be the number of "kinks", i.e., horizontal and vertical grid lines that need to be

added to connect any exterior face vertex of a given embedding to somewhere completely outside. It is easy

to see that K increases only by 0(t) at each marrying step, because the added edges needn't wrap around

the layout more than once. Thus, if i is the maximum of the number of marrying stages involved in laying

out G, and G2, then they can be married by added o(iF) horizontal and vertical grid lines to embed the

O(F) separating edges.

Theorem 2. Any planar graph G with N vertices of degree at most 4, and width at most F, has a planar

embedding in a grid of area A(N) = O(FN).

Proof: Other than the separation and marrying methods, the layout algorithm is the same as the one in

M. It has to be able to produce an embedding in an H x W grid, as long as J:5 HIW _ 3, and HW is

sufficiently large. Suppose by induction that A(N) is sufficient area for an N-vertex graph. Also, suppose

that K(N) is a bound on the number of kinks.

G is separated into G and G2 by removing O(F) edges, with 1GI1 = zIGI, j !< z < 1. Then an

(H - cFK(N)) x (W - cFK(N)) grid is divided in two by a cut parallel to the shorter side in the ratio

z (1 - x). By a theorem in M, the aspect ratios of the two pieces will be in the range , f r, and ,

can be laid out in these pieces, then the embedding can be completed as described above, inserting at most

cFK(N) horizontal and vertical grid lines, for some constant c. So the theorem is true if (assuming H _< W)

1_ 2
(H - cFK(N)XzW - zcFK(N)) 1 A(zN), Vx, I < ! 2

Using HW _ A(N) and (H + W)l/A M _ 4l 1V3, this will be true if

x((N - ,,Ir-(NcFK(N)) j- A(xN), V,, < Z < S

3 -3

After log/ 3 N/F separation steps the graph pieces P.;e no larger than F, so if we stop the recursion at

that point we have K(N) = 0(logN/F). It is easily veriied by substitution that

A(N) = csNF - jON44 4g

satisfies the recurrence, for some a and 0 independent of N and F. In the base case, with N = F, an O(N t)

embedding (see [VM) can be used. One has to be careful to get an embedding that preserves the topology of

a given planar drawing, but it is easy to see how to do this. I
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Therefore, the only possible changes to the given diagram, other than point renaming, are ones at the

degree-2 vertices, such an in Fig. 4.1(b). I

Notice that if the frame tree is embedded using an allowed folding near the top of a spine, this cuts a

hole into two pieces of sizes 2 and B - 2. There cannot be more than one fold into a hole. From now on,

use to term *hole* to mean either a B-point vertical slot or one of these 2 + (B - 2)-point aggregates.

Theorem 4. The forest layout problem s NP-complete.

Proof: Given an instance of the 3-partition problem, construct the frame tree and add 3m other pieces,

unconnected to that tree: for each zi there is a piece consisting of zi vertices joined into a line by zi - I

edges. If m is odd, use the frame graph for the next higher even number and fill in one of the vertical holes.

Now we claim that the 3-partition problem instance has a solution iff there is an embedding of this

forest with a bounding box area of (4n+ 3) x (2B+ 3). For, by the lemma, if there is such an embedding then

it must be as shown in Fig. 4.1(a) with the extra pieces filling up the holes. Since all the grid points are to

be used, this gives a solution to the 3-partition problem, because the size restrictions on the x's imply that

there must be exactly three pieces in each hole. Conversely, given a solution to the 3-partition problem, a
suitable embedding can be found by filling the holes in the frame tree with the pieces corresponding to the

partitioned sets.

This is not a polynomial reduction, since the frame tree has a number of vertices of the order of the

numbers involved in the 3-partition problem, rather than the number of bits required to represent thoe

numbers. This does not matter, however, since the 3-partition problem is strongly UP-complete. The layout

problem is in HP because one can simply guess a mapping of all the vertices to grid points and then verit

that the edges can all be put along the connecting lines. Therefore, the forest layout problem is NP-complete.

l
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